TechTalks from event: Technical session talks from ICRA 2012

Conference registration code to access these videos can be accessed by visiting this link: PaperPlaza. Step-by-step to access these videos are here: step-by-step process .
Why some of the videos are missing? If you had provided your consent form for your video to be published and still it is missing, please contact

Continuum Robots

  • Development of Linear Inchworm Drive Using Flexible Pneumatic Actuator for Active Scope Camera Authors: Wakana, Kazuhito; Ishikura, Michihisa; Konyo, Masashi; Tadokoro, Satoshi
    Active Scope Camera (ASC) using a linear inchworm drive, which can run on various road surfaces assumed in disaster sites, have been developed as a snake-like rescue robot. However, it is difficult for the linear inchworm drive to run in crooked narrow pathways, because its rigid body actuator reduces the flexibility of the scope camera and becomes immovable when the scope camera is curved. There are many crooked narrow pathways inside collapsed houses and under rubble. ASC's search range could be vastly expanded if ASC can run in such environments. In this paper, we developed a flexible linear actuator, which has the bellows structure and the hollow structure, for ASC in order to solve these problems. The actuator was able to generate large force more than 6 N from 60 kPa of applied pressure even if it was curved at 200 mm bending radius. Moreover, we developed a flexible linear inchworm drive using this actuator.The flexible linear inchworm drive keeps the running characteristics on the various road surfaces of the conventional linear inchworm drive. The minimum width of 80 deg crooked pathway that the flexible linear inchworm drive could run through was 60 mm, which was one-thirds narrower than that of the conventional inchworm drive.
  • Robotic Body Extension Based on Hot Melt Adhesives Authors: Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya
    The capability of extending body structures is one of the most significant challenges in the robotics research and it has been partially explored in self-reconfigurable robotics. By using such a capability, a robot is able to adaptively change its structure from, for example, a wheel like body shape to a legged one to deal with complexity in the environment. Despite their expectations, the existing mechanisms for extending body structures are still highly complex and the flexibility in self-reconfiguration is still very limited. In order to account for the problems, this paper investigates a novel approach to robotic body extension by employing an unconventional material called Hot Melt Adhesives (HMAs). Because of its thermo-plastic and thermo-adhesive characteristics, this material can be used for additive fabrication based on a simple robotic manipulator while the established structures can be integrated into the robot’s own body to accomplish a task which could not have been achieved otherwise. This paper first investigates the HMA material properties and its handling techniques, then evaluates performances of the proposed robotic body extension approach through a case study of a “water scooping” task.
  • Design and Analysis of a Robust, Low-Cost, Highly Articulated Manipulator Enabled by Jamming of Granular Media Authors: Cheng, Nadia; Lobovsky, Maxim; Keating, Steven; Setapen, Adam; Gero, Katy Ilonka; Hosoi, Anette; Iagnemma, Karl
    Hyper-redundant manipulators can be fragile, expensive, and limited in their flexibility due to the distributed and bulky actuators that are typically used to achieve the precision and degrees of freedom (DOFs) required. Here, a manipulator is proposed that is robust, high-force, low-cost, and highly articulated without employing traditional actuators mounted at the manipulator joints. Rather, local tunable stiffness is coupled with off-board spooler motors and tension cables to achieve complex manipulator configurations. Tunable stiffness is achieved by reversible jamming of granular media, which—by applying a vacuum to enclosed grains—causes the grains to transition between solid-like states and liquid-like ones. Experimental studies were conducted to identify grains with high strength-to-weight performance. A prototype of the manipulator is presented with performance analysis, with emphasis on speed, strength, and articulation. This novel design for a manipulator—and use of jamming for robotic applications in general—could greatly benefit applications such as human-safe robotics and systems in which robots need to exhibit high flexibility to conform to their environments.
  • Path Planning for Belt Object Manipulation Authors: Wakamatsu, Hidefumi; Morinaga, Eiji; Arai, Eiji; Hirai, Shinichi
    A method to generate an appropriate path for manipulation of a belt object is proposed. It is important for automatic manipulation of a belt object such as a film/flexible circuit board to generate an appropriate path for a manipulator because such object is flexible in a certain direction but fragile in another direction and an inappropriate path which causes deformation in the fragile direction may lead to wiring disconnection. First, deformation of a rectangular belt object is modeled considering its bending and torsional deformation under the force of gravity. Next, a method to generate a path for belt object manipulation with quasi-static and non-excessive deformation is proposed. After that, deformation and loaded condition in a path generated by our proposed method and those in a common path based on linear interpolation are compared. Finally, the validity of our proposed method is verified by measuring the deformed shape of a polyethylene sheet during manipulation with the generated path.
  • Exact and Efficient Collision Detection for a Multi-Section Continuum Manipulator Authors: Li, Jinglin; Xiao, Jing
    Continuum manipulators, featuring “continuous backbone structures”, are promising for deft manipulation of a wide range of objects under uncertain conditions in less-structured and cluttered environments. A multi-section trunk/tentacle robot is such a continuum manipulator. With a continuum robot, manipulation means a continuous whole arm motion, where the arm is often bent into a continuously deforming concave shape. To approximate such an arm with a polygonal mesh for collision detection is expensive not only because a fine mesh is required to approximate concavity but also because each time the manipulator deforms, a new mesh has to be built for the new configuration. However, most generic collision detection algorithms apply to only polygonal meshes or objects of convex primitives. In this paper, we propose an efficient algorithm for Collision Detection between an Exact Continuum Manipulator (CD-ECoM) and its environments, which is applicable to any continuum manipulator featuring multiple constant-curvature sections. Our test results show that using this algorithm is both accurate and more efficient in both time and space to detect collisions than approximating the continuum manipulator as polygonal meshes and applying an existing generic collision detection algorithm. Our CD-ECoM algorithm is essential for path/trajectory planning of continuum manipulators.
  • Design and Architecture of the Unified Modular Snake Robot Authors: Wright, III, Cornell; Buchan, Austin D; Brown, H. Ben; Geist, Jason C.; Schwerin, Michael; Rollinson, David; Tesch, Matthew; Choset, Howie
    The design of a hyper-redundant serial-linkage snake robot is the focus of this paper. The snake, which consists of many fully enclosed actuators, incorporates a modular architecture. In our design, which we call the Unified Snake, we consider size, weight, power, and speed tradeoffs. Each module includes a motor and gear train, an SMA wire actuated bistable brake, custom electronics featuring several different sensors, and a custom intermodule connector. In addition to describing the Unified Snake modules, we also discuss the specialized head and tail modules on the robot and the software that coordinates the motion.