Please help transcribe this video using our simple transcription tool. You need to be logged in to do so.


Autonomous decentralized control is a key concept for the realization of highly adaptive behavior. However, universal design of autonomous decentralized control that ensures rich adaptability is still lacking. In this study, we tackle this problem through the development of a two-dimensional sheet-like robot, SheetBot. The SheetBot is a suitable model system for the establishment of universal design principles for autonomous decentralized control, because it can bend reasonably to the circumstances encountered due to its large surface area, and also because its applications are widely expected. To realize highly adaptive locomotion with SheetBot, we are inspired by the decentralized control scheme of the scaffold-based locomotion of snakes. We extend this design scheme to a two-dimensional bodily structure on the basis of a continuum model. Simulation results show that SheetBot can locomote on various kinds of irregular terrain with minimal control inputs by implementing the proposed autonomous decentralized control scheme.

Questions and Answers

You need to be logged in to be able to post here.